Metamath Proof Explorer


Theorem dvrunz

Description: In a division ring the unit is different from the zero. (Contributed by FL, 14-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dvrunz.1 G = 1 st R
dvrunz.2 H = 2 nd R
dvrunz.3 X = ran G
dvrunz.4 Z = GId G
dvrunz.5 U = GId H
Assertion dvrunz R DivRingOps U Z

Proof

Step Hyp Ref Expression
1 dvrunz.1 G = 1 st R
2 dvrunz.2 H = 2 nd R
3 dvrunz.3 X = ran G
4 dvrunz.4 Z = GId G
5 dvrunz.5 U = GId H
6 4 fvexi Z V
7 6 zrdivrng ¬ Z Z Z Z Z Z DivRingOps
8 1 2 3 4 drngoi R DivRingOps R RingOps H X Z × X Z GrpOp
9 8 simpld R DivRingOps R RingOps
10 1 2 4 5 3 rngoueqz R RingOps X 1 𝑜 U = Z
11 9 10 syl R DivRingOps X 1 𝑜 U = Z
12 1 3 4 rngosn6 R RingOps X 1 𝑜 R = Z Z Z Z Z Z
13 9 12 syl R DivRingOps X 1 𝑜 R = Z Z Z Z Z Z
14 eleq1 R = Z Z Z Z Z Z R DivRingOps Z Z Z Z Z Z DivRingOps
15 14 biimpd R = Z Z Z Z Z Z R DivRingOps Z Z Z Z Z Z DivRingOps
16 13 15 syl6bi R DivRingOps X 1 𝑜 R DivRingOps Z Z Z Z Z Z DivRingOps
17 16 pm2.43a R DivRingOps X 1 𝑜 Z Z Z Z Z Z DivRingOps
18 11 17 sylbird R DivRingOps U = Z Z Z Z Z Z Z DivRingOps
19 18 necon3bd R DivRingOps ¬ Z Z Z Z Z Z DivRingOps U Z
20 7 19 mpi R DivRingOps U Z