Metamath Proof Explorer


Theorem dvrval

Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses dvrval.b B = Base R
dvrval.t · ˙ = R
dvrval.u U = Unit R
dvrval.i I = inv r R
dvrval.d × ˙ = / r R
Assertion dvrval X B Y U X × ˙ Y = X · ˙ I Y

Proof

Step Hyp Ref Expression
1 dvrval.b B = Base R
2 dvrval.t · ˙ = R
3 dvrval.u U = Unit R
4 dvrval.i I = inv r R
5 dvrval.d × ˙ = / r R
6 oveq1 x = X x · ˙ I y = X · ˙ I y
7 fveq2 y = Y I y = I Y
8 7 oveq2d y = Y X · ˙ I y = X · ˙ I Y
9 1 2 3 4 5 dvrfval × ˙ = x B , y U x · ˙ I y
10 ovex X · ˙ I Y V
11 6 8 9 10 ovmpo X B Y U X × ˙ Y = X · ˙ I Y