Metamath Proof Explorer


Theorem dvsqrt

Description: The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Assertion dvsqrt dx + x d x = x + 1 2 x

Proof

Step Hyp Ref Expression
1 halfcn 1 2
2 dvcxp1 1 2 dx + x 1 2 d x = x + 1 2 x 1 2 1
3 1 2 ax-mp dx + x 1 2 d x = x + 1 2 x 1 2 1
4 rpcn x + x
5 cxpsqrt x x 1 2 = x
6 4 5 syl x + x 1 2 = x
7 6 mpteq2ia x + x 1 2 = x + x
8 7 oveq2i dx + x 1 2 d x = dx + x d x
9 1p0e1 1 + 0 = 1
10 ax-1cn 1
11 2halves 1 1 2 + 1 2 = 1
12 10 11 ax-mp 1 2 + 1 2 = 1
13 9 12 eqtr4i 1 + 0 = 1 2 + 1 2
14 0cn 0
15 addsubeq4 1 0 1 2 1 2 1 + 0 = 1 2 + 1 2 1 2 1 = 0 1 2
16 10 14 1 1 15 mp4an 1 + 0 = 1 2 + 1 2 1 2 1 = 0 1 2
17 13 16 mpbi 1 2 1 = 0 1 2
18 df-neg 1 2 = 0 1 2
19 17 18 eqtr4i 1 2 1 = 1 2
20 19 oveq2i x 1 2 1 = x 1 2
21 rpne0 x + x 0
22 1 a1i x + 1 2
23 4 21 22 cxpnegd x + x 1 2 = 1 x 1 2
24 20 23 syl5eq x + x 1 2 1 = 1 x 1 2
25 6 oveq2d x + 1 x 1 2 = 1 x
26 24 25 eqtrd x + x 1 2 1 = 1 x
27 26 oveq2d x + 1 2 x 1 2 1 = 1 2 1 x
28 10 a1i x + 1
29 2cnne0 2 2 0
30 29 a1i x + 2 2 0
31 rpsqrtcl x + x +
32 31 rpcnne0d x + x x 0
33 divmuldiv 1 1 2 2 0 x x 0 1 2 1 x = 1 1 2 x
34 28 28 30 32 33 syl22anc x + 1 2 1 x = 1 1 2 x
35 1t1e1 1 1 = 1
36 35 oveq1i 1 1 2 x = 1 2 x
37 34 36 eqtrdi x + 1 2 1 x = 1 2 x
38 27 37 eqtrd x + 1 2 x 1 2 1 = 1 2 x
39 38 mpteq2ia x + 1 2 x 1 2 1 = x + 1 2 x
40 3 8 39 3eqtr3i dx + x d x = x + 1 2 x