Metamath Proof Explorer


Theorem dvsubcncf

Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvsubcncf.s φ S
dvsubcncf.f φ F : X
dvsubcncf.g φ G : X
dvsubcncf.fdv φ F S : X cn
dvsubcncf.gdv φ G S : X cn
Assertion dvsubcncf φ F f G S : X cn

Proof

Step Hyp Ref Expression
1 dvsubcncf.s φ S
2 dvsubcncf.f φ F : X
3 dvsubcncf.g φ G : X
4 dvsubcncf.fdv φ F S : X cn
5 dvsubcncf.gdv φ G S : X cn
6 cncff F S : X cn F S : X
7 fdm F S : X dom F S = X
8 4 6 7 3syl φ dom F S = X
9 cncff G S : X cn G S : X
10 fdm G S : X dom G S = X
11 5 9 10 3syl φ dom G S = X
12 1 2 3 8 11 dvsubf φ S D F f G = F S f G S
13 4 5 subcncff φ F S f G S : X cn
14 12 13 eqeltrd φ F f G S : X cn