Metamath Proof Explorer


Theorem dvsubf

Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvsubf.s φ S
dvsubf.f φ F : X
dvsubf.g φ G : X
dvsubf.fdv φ dom F S = X
dvsubf.gdv φ dom G S = X
Assertion dvsubf φ S D F f G = F S f G S

Proof

Step Hyp Ref Expression
1 dvsubf.s φ S
2 dvsubf.f φ F : X
3 dvsubf.g φ G : X
4 dvsubf.fdv φ dom F S = X
5 dvsubf.gdv φ dom G S = X
6 2 ffvelrnda φ x X F x
7 dvfg S F S : dom F S
8 1 7 syl φ F S : dom F S
9 4 feq2d φ F S : dom F S F S : X
10 8 9 mpbid φ F S : X
11 10 ffvelrnda φ x X F S x
12 2 feqmptd φ F = x X F x
13 12 oveq2d φ S D F = dx X F x dS x
14 10 feqmptd φ S D F = x X F S x
15 13 14 eqtr3d φ dx X F x dS x = x X F S x
16 3 ffvelrnda φ x X G x
17 dvfg S G S : dom G S
18 1 17 syl φ G S : dom G S
19 5 feq2d φ G S : dom G S G S : X
20 18 19 mpbid φ G S : X
21 20 ffvelrnda φ x X G S x
22 3 feqmptd φ G = x X G x
23 22 oveq2d φ S D G = dx X G x dS x
24 20 feqmptd φ S D G = x X G S x
25 23 24 eqtr3d φ dx X G x dS x = x X G S x
26 1 6 11 15 16 21 25 dvmptsub φ dx X F x G x dS x = x X F S x G S x
27 ovex S D F V
28 27 dmex dom F S V
29 4 28 eqeltrrdi φ X V
30 29 6 16 12 22 offval2 φ F f G = x X F x G x
31 30 oveq2d φ S D F f G = dx X F x G x dS x
32 29 11 21 14 24 offval2 φ F S f G S = x X F S x G S x
33 26 31 32 3eqtr4d φ S D F f G = F S f G S