Metamath Proof Explorer


Theorem dvtaylp

Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses dvtaylp.s φ S
dvtaylp.f φ F : A
dvtaylp.a φ A S
dvtaylp.n φ N 0
dvtaylp.b φ B dom S D n F N + 1
Assertion dvtaylp φ D N + 1 S Tayl F B = N S Tayl F S B

Proof

Step Hyp Ref Expression
1 dvtaylp.s φ S
2 dvtaylp.f φ F : A
3 dvtaylp.a φ A S
4 dvtaylp.n φ N 0
5 dvtaylp.b φ B dom S D n F N + 1
6 eqid TopOpen fld = TopOpen fld
7 6 cnfldtopon TopOpen fld TopOn
8 7 toponrestid TopOpen fld = TopOpen fld 𝑡
9 cnelprrecn
10 9 a1i φ
11 toponmax TopOpen fld TopOn TopOpen fld
12 7 11 mp1i φ TopOpen fld
13 fzfid φ 0 N + 1 Fin
14 cnex V
15 14 a1i φ V
16 elpm2r V S F : A A S F 𝑝𝑚 S
17 15 1 2 3 16 syl22anc φ F 𝑝𝑚 S
18 elfznn0 k 0 N + 1 k 0
19 dvnf S F 𝑝𝑚 S k 0 S D n F k : dom S D n F k
20 1 17 18 19 syl2an3an φ k 0 N + 1 S D n F k : dom S D n F k
21 0z 0
22 peano2nn0 N 0 N + 1 0
23 4 22 syl φ N + 1 0
24 23 nn0zd φ N + 1
25 fzval2 0 N + 1 0 N + 1 = 0 N + 1
26 21 24 25 sylancr φ 0 N + 1 = 0 N + 1
27 26 eleq2d φ k 0 N + 1 k 0 N + 1
28 27 biimpa φ k 0 N + 1 k 0 N + 1
29 1 2 3 23 5 taylplem1 φ k 0 N + 1 B dom S D n F k
30 28 29 syldan φ k 0 N + 1 B dom S D n F k
31 20 30 ffvelrnd φ k 0 N + 1 S D n F k B
32 18 adantl φ k 0 N + 1 k 0
33 32 faccld φ k 0 N + 1 k !
34 33 nncnd φ k 0 N + 1 k !
35 33 nnne0d φ k 0 N + 1 k ! 0
36 31 34 35 divcld φ k 0 N + 1 S D n F k B k !
37 36 3adant3 φ k 0 N + 1 x S D n F k B k !
38 simp3 φ k 0 N + 1 x x
39 recnprss S S
40 1 39 syl φ S
41 3 40 sstrd φ A
42 dvnbss S F 𝑝𝑚 S N + 1 0 dom S D n F N + 1 dom F
43 1 17 23 42 syl3anc φ dom S D n F N + 1 dom F
44 2 43 fssdmd φ dom S D n F N + 1 A
45 44 5 sseldd φ B A
46 41 45 sseldd φ B
47 46 3ad2ant1 φ k 0 N + 1 x B
48 38 47 subcld φ k 0 N + 1 x x B
49 18 3ad2ant2 φ k 0 N + 1 x k 0
50 48 49 expcld φ k 0 N + 1 x x B k
51 37 50 mulcld φ k 0 N + 1 x S D n F k B k ! x B k
52 0cnd φ k 0 N + 1 x k = 0 0
53 49 nn0cnd φ k 0 N + 1 x k
54 53 adantr φ k 0 N + 1 x ¬ k = 0 k
55 48 adantr φ k 0 N + 1 x ¬ k = 0 x B
56 49 adantr φ k 0 N + 1 x ¬ k = 0 k 0
57 simpr φ k 0 N + 1 x ¬ k = 0 ¬ k = 0
58 57 neqned φ k 0 N + 1 x ¬ k = 0 k 0
59 elnnne0 k k 0 k 0
60 56 58 59 sylanbrc φ k 0 N + 1 x ¬ k = 0 k
61 nnm1nn0 k k 1 0
62 60 61 syl φ k 0 N + 1 x ¬ k = 0 k 1 0
63 55 62 expcld φ k 0 N + 1 x ¬ k = 0 x B k 1
64 54 63 mulcld φ k 0 N + 1 x ¬ k = 0 k x B k 1
65 52 64 ifclda φ k 0 N + 1 x if k = 0 0 k x B k 1
66 37 65 mulcld φ k 0 N + 1 x S D n F k B k ! if k = 0 0 k x B k 1
67 9 a1i φ k 0 N + 1
68 50 3expa φ k 0 N + 1 x x B k
69 65 3expa φ k 0 N + 1 x if k = 0 0 k x B k 1
70 48 3expa φ k 0 N + 1 x x B
71 1cnd φ k 0 N + 1 x 1
72 simpr φ k 0 N + 1 y y
73 32 adantr φ k 0 N + 1 y k 0
74 72 73 expcld φ k 0 N + 1 y y k
75 c0ex 0 V
76 ovex k y k 1 V
77 75 76 ifex if k = 0 0 k y k 1 V
78 77 a1i φ k 0 N + 1 y if k = 0 0 k y k 1 V
79 simpr φ k 0 N + 1 x x
80 67 dvmptid φ k 0 N + 1 dx x d x = x 1
81 46 ad2antrr φ k 0 N + 1 x B
82 0cnd φ k 0 N + 1 x 0
83 46 adantr φ k 0 N + 1 B
84 67 83 dvmptc φ k 0 N + 1 dx B d x = x 0
85 67 79 71 80 81 82 84 dvmptsub φ k 0 N + 1 dx x B d x = x 1 0
86 1m0e1 1 0 = 1
87 86 mpteq2i x 1 0 = x 1
88 85 87 eqtrdi φ k 0 N + 1 dx x B d x = x 1
89 dvexp2 k 0 dy y k d y = y if k = 0 0 k y k 1
90 32 89 syl φ k 0 N + 1 dy y k d y = y if k = 0 0 k y k 1
91 oveq1 y = x B y k = x B k
92 oveq1 y = x B y k 1 = x B k 1
93 92 oveq2d y = x B k y k 1 = k x B k 1
94 93 ifeq2d y = x B if k = 0 0 k y k 1 = if k = 0 0 k x B k 1
95 67 67 70 71 74 78 88 90 91 94 dvmptco φ k 0 N + 1 dx x B k d x = x if k = 0 0 k x B k 1 1
96 69 mulid1d φ k 0 N + 1 x if k = 0 0 k x B k 1 1 = if k = 0 0 k x B k 1
97 96 mpteq2dva φ k 0 N + 1 x if k = 0 0 k x B k 1 1 = x if k = 0 0 k x B k 1
98 95 97 eqtrd φ k 0 N + 1 dx x B k d x = x if k = 0 0 k x B k 1
99 67 68 69 98 36 dvmptcmul φ k 0 N + 1 dx S D n F k B k ! x B k d x = x S D n F k B k ! if k = 0 0 k x B k 1
100 8 6 10 12 13 51 66 99 dvmptfsum φ dx k = 0 N + 1 S D n F k B k ! x B k d x = x k = 0 N + 1 S D n F k B k ! if k = 0 0 k x B k 1
101 1zzd φ x 1
102 0zd φ x 0
103 4 nn0zd φ N
104 103 adantr φ x N
105 dvfg S F S : dom F S
106 1 105 syl φ F S : dom F S
107 40 2 3 dvbss φ dom F S A
108 107 3 sstrd φ dom F S S
109 1nn0 1 0
110 109 a1i φ 1 0
111 dvnadd S F 𝑝𝑚 S 1 0 N 0 S D n S D n F 1 N = S D n F 1 + N
112 1 17 110 4 111 syl22anc φ S D n S D n F 1 N = S D n F 1 + N
113 dvn1 S F 𝑝𝑚 S S D n F 1 = S D F
114 40 17 113 syl2anc φ S D n F 1 = S D F
115 114 oveq2d φ S D n S D n F 1 = S D n F S
116 115 fveq1d φ S D n S D n F 1 N = S D n F S N
117 1cnd φ 1
118 4 nn0cnd φ N
119 117 118 addcomd φ 1 + N = N + 1
120 119 fveq2d φ S D n F 1 + N = S D n F N + 1
121 112 116 120 3eqtr3d φ S D n F S N = S D n F N + 1
122 121 dmeqd φ dom S D n F S N = dom S D n F N + 1
123 5 122 eleqtrrd φ B dom S D n F S N
124 1 106 108 4 123 taylplem2 φ x j 0 N S D n F S j B j ! x B j
125 fveq2 j = k 1 S D n F S j = S D n F S k 1
126 125 fveq1d j = k 1 S D n F S j B = S D n F S k 1 B
127 fveq2 j = k 1 j ! = k 1 !
128 126 127 oveq12d j = k 1 S D n F S j B j ! = S D n F S k 1 B k 1 !
129 oveq2 j = k 1 x B j = x B k 1
130 128 129 oveq12d j = k 1 S D n F S j B j ! x B j = S D n F S k 1 B k 1 ! x B k 1
131 101 102 104 124 130 fsumshft φ x j = 0 N S D n F S j B j ! x B j = k = 0 + 1 N + 1 S D n F S k 1 B k 1 ! x B k 1
132 elfznn k 1 N + 1 k
133 132 adantl φ x k 1 N + 1 k
134 133 nnne0d φ x k 1 N + 1 k 0
135 ifnefalse k 0 if k = 0 0 k x B k 1 = k x B k 1
136 134 135 syl φ x k 1 N + 1 if k = 0 0 k x B k 1 = k x B k 1
137 136 oveq2d φ x k 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = S D n F k B k ! k x B k 1
138 simpll φ x k 1 N + 1 φ
139 fz1ssfz0 1 N + 1 0 N + 1
140 139 sseli k 1 N + 1 k 0 N + 1
141 140 adantl φ x k 1 N + 1 k 0 N + 1
142 138 141 36 syl2anc φ x k 1 N + 1 S D n F k B k !
143 133 nncnd φ x k 1 N + 1 k
144 simplr φ x k 1 N + 1 x
145 46 ad2antrr φ x k 1 N + 1 B
146 144 145 subcld φ x k 1 N + 1 x B
147 133 61 syl φ x k 1 N + 1 k 1 0
148 146 147 expcld φ x k 1 N + 1 x B k 1
149 142 143 148 mulassd φ x k 1 N + 1 S D n F k B k ! k x B k 1 = S D n F k B k ! k x B k 1
150 facp1 k 1 0 k - 1 + 1 ! = k 1 ! k - 1 + 1
151 147 150 syl φ x k 1 N + 1 k - 1 + 1 ! = k 1 ! k - 1 + 1
152 1cnd φ x k 1 N + 1 1
153 143 152 npcand φ x k 1 N + 1 k - 1 + 1 = k
154 153 fveq2d φ x k 1 N + 1 k - 1 + 1 ! = k !
155 153 oveq2d φ x k 1 N + 1 k 1 ! k - 1 + 1 = k 1 ! k
156 151 154 155 3eqtr3d φ x k 1 N + 1 k ! = k 1 ! k
157 156 oveq2d φ x k 1 N + 1 S D n F k B k k ! = S D n F k B k k 1 ! k
158 32 nn0cnd φ k 0 N + 1 k
159 31 158 34 35 div23d φ k 0 N + 1 S D n F k B k k ! = S D n F k B k ! k
160 138 141 159 syl2anc φ x k 1 N + 1 S D n F k B k k ! = S D n F k B k ! k
161 138 141 31 syl2anc φ x k 1 N + 1 S D n F k B
162 147 faccld φ x k 1 N + 1 k 1 !
163 162 nncnd φ x k 1 N + 1 k 1 !
164 162 nnne0d φ x k 1 N + 1 k 1 ! 0
165 161 163 143 164 134 divcan5rd φ x k 1 N + 1 S D n F k B k k 1 ! k = S D n F k B k 1 !
166 1 ad2antrr φ x k 1 N + 1 S
167 17 ad2antrr φ x k 1 N + 1 F 𝑝𝑚 S
168 109 a1i φ x k 1 N + 1 1 0
169 dvnadd S F 𝑝𝑚 S 1 0 k 1 0 S D n S D n F 1 k 1 = S D n F 1 + k - 1
170 166 167 168 147 169 syl22anc φ x k 1 N + 1 S D n S D n F 1 k 1 = S D n F 1 + k - 1
171 114 ad2antrr φ x k 1 N + 1 S D n F 1 = S D F
172 171 oveq2d φ x k 1 N + 1 S D n S D n F 1 = S D n F S
173 172 fveq1d φ x k 1 N + 1 S D n S D n F 1 k 1 = S D n F S k 1
174 152 143 pncan3d φ x k 1 N + 1 1 + k - 1 = k
175 174 fveq2d φ x k 1 N + 1 S D n F 1 + k - 1 = S D n F k
176 170 173 175 3eqtr3rd φ x k 1 N + 1 S D n F k = S D n F S k 1
177 176 fveq1d φ x k 1 N + 1 S D n F k B = S D n F S k 1 B
178 177 oveq1d φ x k 1 N + 1 S D n F k B k 1 ! = S D n F S k 1 B k 1 !
179 165 178 eqtrd φ x k 1 N + 1 S D n F k B k k 1 ! k = S D n F S k 1 B k 1 !
180 157 160 179 3eqtr3d φ x k 1 N + 1 S D n F k B k ! k = S D n F S k 1 B k 1 !
181 180 oveq1d φ x k 1 N + 1 S D n F k B k ! k x B k 1 = S D n F S k 1 B k 1 ! x B k 1
182 137 149 181 3eqtr2d φ x k 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = S D n F S k 1 B k 1 ! x B k 1
183 182 sumeq2dv φ x k = 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = k = 1 N + 1 S D n F S k 1 B k 1 ! x B k 1
184 0p1e1 0 + 1 = 1
185 184 oveq1i 0 + 1 N + 1 = 1 N + 1
186 185 sumeq1i k = 0 + 1 N + 1 S D n F S k 1 B k 1 ! x B k 1 = k = 1 N + 1 S D n F S k 1 B k 1 ! x B k 1
187 183 186 eqtr4di φ x k = 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = k = 0 + 1 N + 1 S D n F S k 1 B k 1 ! x B k 1
188 139 a1i φ x 1 N + 1 0 N + 1
189 69 an32s φ x k 0 N + 1 if k = 0 0 k x B k 1
190 140 189 sylan2 φ x k 1 N + 1 if k = 0 0 k x B k 1
191 142 190 mulcld φ x k 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1
192 eldif k 0 N + 1 1 N + 1 k 0 N + 1 ¬ k 1 N + 1
193 59 biimpri k 0 k 0 k
194 18 193 sylan k 0 N + 1 k 0 k
195 nnuz = 1
196 194 195 eleqtrdi k 0 N + 1 k 0 k 1
197 elfzuz3 k 0 N + 1 N + 1 k
198 197 adantr k 0 N + 1 k 0 N + 1 k
199 elfzuzb k 1 N + 1 k 1 N + 1 k
200 196 198 199 sylanbrc k 0 N + 1 k 0 k 1 N + 1
201 200 ex k 0 N + 1 k 0 k 1 N + 1
202 201 adantl φ x k 0 N + 1 k 0 k 1 N + 1
203 202 necon1bd φ x k 0 N + 1 ¬ k 1 N + 1 k = 0
204 203 impr φ x k 0 N + 1 ¬ k 1 N + 1 k = 0
205 192 204 sylan2b φ x k 0 N + 1 1 N + 1 k = 0
206 205 iftrued φ x k 0 N + 1 1 N + 1 if k = 0 0 k x B k 1 = 0
207 206 oveq2d φ x k 0 N + 1 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = S D n F k B k ! 0
208 eldifi k 0 N + 1 1 N + 1 k 0 N + 1
209 36 adantlr φ x k 0 N + 1 S D n F k B k !
210 208 209 sylan2 φ x k 0 N + 1 1 N + 1 S D n F k B k !
211 210 mul01d φ x k 0 N + 1 1 N + 1 S D n F k B k ! 0 = 0
212 207 211 eqtrd φ x k 0 N + 1 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = 0
213 fzfid φ x 0 N + 1 Fin
214 188 191 212 213 fsumss φ x k = 1 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = k = 0 N + 1 S D n F k B k ! if k = 0 0 k x B k 1
215 131 187 214 3eqtr2rd φ x k = 0 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = j = 0 N S D n F S j B j ! x B j
216 215 mpteq2dva φ x k = 0 N + 1 S D n F k B k ! if k = 0 0 k x B k 1 = x j = 0 N S D n F S j B j ! x B j
217 100 216 eqtrd φ dx k = 0 N + 1 S D n F k B k ! x B k d x = x j = 0 N S D n F S j B j ! x B j
218 eqid N + 1 S Tayl F B = N + 1 S Tayl F B
219 1 2 3 23 5 218 taylpfval φ N + 1 S Tayl F B = x k = 0 N + 1 S D n F k B k ! x B k
220 219 oveq2d φ D N + 1 S Tayl F B = dx k = 0 N + 1 S D n F k B k ! x B k d x
221 eqid N S Tayl F S B = N S Tayl F S B
222 1 106 108 4 123 221 taylpfval φ N S Tayl F S B = x j = 0 N S D n F S j B j ! x B j
223 217 220 222 3eqtr4d φ D N + 1 S Tayl F B = N S Tayl F S B