Metamath Proof Explorer


Theorem dyadmaxlem

Description: Lemma for dyadmax . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
dyadmax.2 φ A
dyadmax.3 φ B
dyadmax.4 φ C 0
dyadmax.5 φ D 0
dyadmax.6 φ ¬ D < C
dyadmax.7 φ . A F C . B F D
Assertion dyadmaxlem φ A = B C = D

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 dyadmax.2 φ A
3 dyadmax.3 φ B
4 dyadmax.4 φ C 0
5 dyadmax.5 φ D 0
6 dyadmax.6 φ ¬ D < C
7 dyadmax.7 φ . A F C . B F D
8 1 dyadval A C 0 A F C = A 2 C A + 1 2 C
9 2 4 8 syl2anc φ A F C = A 2 C A + 1 2 C
10 9 fveq2d φ . A F C = . A 2 C A + 1 2 C
11 df-ov A 2 C A + 1 2 C = . A 2 C A + 1 2 C
12 10 11 eqtr4di φ . A F C = A 2 C A + 1 2 C
13 1 dyadss A B C 0 D 0 . A F C . B F D D C
14 2 3 4 5 13 syl22anc φ . A F C . B F D D C
15 7 14 mpd φ D C
16 5 nn0red φ D
17 4 nn0red φ C
18 16 17 eqleltd φ D = C D C ¬ D < C
19 15 6 18 mpbir2and φ D = C
20 19 oveq2d φ B F D = B F C
21 1 dyadval B C 0 B F C = B 2 C B + 1 2 C
22 3 4 21 syl2anc φ B F C = B 2 C B + 1 2 C
23 20 22 eqtrd φ B F D = B 2 C B + 1 2 C
24 23 fveq2d φ . B F D = . B 2 C B + 1 2 C
25 df-ov B 2 C B + 1 2 C = . B 2 C B + 1 2 C
26 24 25 eqtr4di φ . B F D = B 2 C B + 1 2 C
27 7 12 26 3sstr3d φ A 2 C A + 1 2 C B 2 C B + 1 2 C
28 2 zred φ A
29 2nn 2
30 nnexpcl 2 C 0 2 C
31 29 4 30 sylancr φ 2 C
32 28 31 nndivred φ A 2 C
33 32 rexrd φ A 2 C *
34 peano2re A A + 1
35 28 34 syl φ A + 1
36 35 31 nndivred φ A + 1 2 C
37 36 rexrd φ A + 1 2 C *
38 28 lep1d φ A A + 1
39 31 nnred φ 2 C
40 31 nngt0d φ 0 < 2 C
41 lediv1 A A + 1 2 C 0 < 2 C A A + 1 A 2 C A + 1 2 C
42 28 35 39 40 41 syl112anc φ A A + 1 A 2 C A + 1 2 C
43 38 42 mpbid φ A 2 C A + 1 2 C
44 ubicc2 A 2 C * A + 1 2 C * A 2 C A + 1 2 C A + 1 2 C A 2 C A + 1 2 C
45 33 37 43 44 syl3anc φ A + 1 2 C A 2 C A + 1 2 C
46 27 45 sseldd φ A + 1 2 C B 2 C B + 1 2 C
47 3 zred φ B
48 47 31 nndivred φ B 2 C
49 peano2re B B + 1
50 47 49 syl φ B + 1
51 50 31 nndivred φ B + 1 2 C
52 elicc2 B 2 C B + 1 2 C A + 1 2 C B 2 C B + 1 2 C A + 1 2 C B 2 C A + 1 2 C A + 1 2 C B + 1 2 C
53 48 51 52 syl2anc φ A + 1 2 C B 2 C B + 1 2 C A + 1 2 C B 2 C A + 1 2 C A + 1 2 C B + 1 2 C
54 46 53 mpbid φ A + 1 2 C B 2 C A + 1 2 C A + 1 2 C B + 1 2 C
55 54 simp3d φ A + 1 2 C B + 1 2 C
56 lediv1 A + 1 B + 1 2 C 0 < 2 C A + 1 B + 1 A + 1 2 C B + 1 2 C
57 35 50 39 40 56 syl112anc φ A + 1 B + 1 A + 1 2 C B + 1 2 C
58 55 57 mpbird φ A + 1 B + 1
59 1red φ 1
60 28 47 59 leadd1d φ A B A + 1 B + 1
61 58 60 mpbird φ A B
62 lbicc2 A 2 C * A + 1 2 C * A 2 C A + 1 2 C A 2 C A 2 C A + 1 2 C
63 33 37 43 62 syl3anc φ A 2 C A 2 C A + 1 2 C
64 27 63 sseldd φ A 2 C B 2 C B + 1 2 C
65 elicc2 B 2 C B + 1 2 C A 2 C B 2 C B + 1 2 C A 2 C B 2 C A 2 C A 2 C B + 1 2 C
66 48 51 65 syl2anc φ A 2 C B 2 C B + 1 2 C A 2 C B 2 C A 2 C A 2 C B + 1 2 C
67 64 66 mpbid φ A 2 C B 2 C A 2 C A 2 C B + 1 2 C
68 67 simp2d φ B 2 C A 2 C
69 lediv1 B A 2 C 0 < 2 C B A B 2 C A 2 C
70 47 28 39 40 69 syl112anc φ B A B 2 C A 2 C
71 68 70 mpbird φ B A
72 28 47 letri3d φ A = B A B B A
73 61 71 72 mpbir2and φ A = B
74 19 eqcomd φ C = D
75 73 74 jca φ A = B C = D