| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dyadmbl.1 |  | 
						
							| 2 |  | dyadmbl.2 |  | 
						
							| 3 |  | dyadmbl.3 |  | 
						
							| 4 | 1 2 3 | dyadmbllem |  | 
						
							| 5 |  | isfinite |  | 
						
							| 6 |  | iccf |  | 
						
							| 7 |  | ffun |  | 
						
							| 8 |  | funiunfv |  | 
						
							| 9 | 6 7 8 | mp2b |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 2 | ssrab3 |  | 
						
							| 12 | 11 3 | sstrid |  | 
						
							| 13 | 1 | dyadf |  | 
						
							| 14 |  | frn |  | 
						
							| 15 | 13 14 | ax-mp |  | 
						
							| 16 |  | inss2 |  | 
						
							| 17 | 15 16 | sstri |  | 
						
							| 18 | 12 17 | sstrdi |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | sselda |  | 
						
							| 21 |  | 1st2nd2 |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 22 | fveq2d |  | 
						
							| 24 |  | df-ov |  | 
						
							| 25 | 23 24 | eqtr4di |  | 
						
							| 26 |  | xp1st |  | 
						
							| 27 | 20 26 | syl |  | 
						
							| 28 |  | xp2nd |  | 
						
							| 29 | 20 28 | syl |  | 
						
							| 30 |  | iccmbl |  | 
						
							| 31 | 27 29 30 | syl2anc |  | 
						
							| 32 | 25 31 | eqeltrd |  | 
						
							| 33 | 32 | ralrimiva |  | 
						
							| 34 |  | finiunmbl |  | 
						
							| 35 | 10 33 34 | syl2anc |  | 
						
							| 36 | 9 35 | eqeltrrid |  | 
						
							| 37 | 5 36 | sylan2br |  | 
						
							| 38 |  | rnco2 |  | 
						
							| 39 |  | f1ofo |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 |  | forn |  | 
						
							| 42 | 40 41 | syl |  | 
						
							| 43 | 42 | imaeq2d |  | 
						
							| 44 | 38 43 | eqtrid |  | 
						
							| 45 | 44 | unieqd |  | 
						
							| 46 |  | f1of |  | 
						
							| 47 | 12 15 | sstrdi |  | 
						
							| 48 |  | fss |  | 
						
							| 49 | 46 47 48 | syl2anr |  | 
						
							| 50 |  | fss |  | 
						
							| 51 | 46 12 50 | syl2anr |  | 
						
							| 52 |  | simpl |  | 
						
							| 53 |  | ffvelcdm |  | 
						
							| 54 | 51 52 53 | syl2an |  | 
						
							| 55 |  | simpr |  | 
						
							| 56 |  | ffvelcdm |  | 
						
							| 57 | 51 55 56 | syl2an |  | 
						
							| 58 | 1 | dyaddisj |  | 
						
							| 59 | 54 57 58 | syl2anc |  | 
						
							| 60 |  | fveq2 |  | 
						
							| 61 | 60 | sseq2d |  | 
						
							| 62 |  | eqeq2 |  | 
						
							| 63 | 61 62 | imbi12d |  | 
						
							| 64 | 46 | adantl |  | 
						
							| 65 |  | ffvelcdm |  | 
						
							| 66 | 64 52 65 | syl2an |  | 
						
							| 67 |  | fveq2 |  | 
						
							| 68 | 67 | sseq1d |  | 
						
							| 69 |  | eqeq1 |  | 
						
							| 70 | 68 69 | imbi12d |  | 
						
							| 71 | 70 | ralbidv |  | 
						
							| 72 | 71 2 | elrab2 |  | 
						
							| 73 | 72 | simprbi |  | 
						
							| 74 | 66 73 | syl |  | 
						
							| 75 |  | ffvelcdm |  | 
						
							| 76 | 64 55 75 | syl2an |  | 
						
							| 77 | 11 76 | sselid |  | 
						
							| 78 | 63 74 77 | rspcdva |  | 
						
							| 79 |  | f1of1 |  | 
						
							| 80 | 79 | adantl |  | 
						
							| 81 |  | f1fveq |  | 
						
							| 82 | 80 81 | sylan |  | 
						
							| 83 |  | orc |  | 
						
							| 84 | 82 83 | biimtrdi |  | 
						
							| 85 | 78 84 | syld |  | 
						
							| 86 |  | fveq2 |  | 
						
							| 87 | 86 | sseq2d |  | 
						
							| 88 |  | eqeq2 |  | 
						
							| 89 |  | eqcom |  | 
						
							| 90 | 88 89 | bitrdi |  | 
						
							| 91 | 87 90 | imbi12d |  | 
						
							| 92 |  | fveq2 |  | 
						
							| 93 | 92 | sseq1d |  | 
						
							| 94 |  | eqeq1 |  | 
						
							| 95 | 93 94 | imbi12d |  | 
						
							| 96 | 95 | ralbidv |  | 
						
							| 97 | 96 2 | elrab2 |  | 
						
							| 98 | 97 | simprbi |  | 
						
							| 99 | 76 98 | syl |  | 
						
							| 100 | 11 66 | sselid |  | 
						
							| 101 | 91 99 100 | rspcdva |  | 
						
							| 102 | 101 84 | syld |  | 
						
							| 103 |  | olc |  | 
						
							| 104 | 103 | a1i |  | 
						
							| 105 | 85 102 104 | 3jaod |  | 
						
							| 106 | 59 105 | mpd |  | 
						
							| 107 | 106 | ralrimivva |  | 
						
							| 108 |  | 2fveq3 |  | 
						
							| 109 | 108 | disjor |  | 
						
							| 110 | 107 109 | sylibr |  | 
						
							| 111 |  | eqid |  | 
						
							| 112 | 49 110 111 | uniiccmbl |  | 
						
							| 113 | 45 112 | eqeltrrd |  | 
						
							| 114 | 113 | ex |  | 
						
							| 115 | 114 | exlimdv |  | 
						
							| 116 |  | nnenom |  | 
						
							| 117 |  | ensym |  | 
						
							| 118 |  | entr |  | 
						
							| 119 | 116 117 118 | sylancr |  | 
						
							| 120 |  | bren |  | 
						
							| 121 | 119 120 | sylib |  | 
						
							| 122 | 115 121 | impel |  | 
						
							| 123 |  | reex |  | 
						
							| 124 | 123 123 | xpex |  | 
						
							| 125 | 124 | inex2 |  | 
						
							| 126 | 125 15 | ssexi |  | 
						
							| 127 |  | ssdomg |  | 
						
							| 128 | 126 12 127 | mpsyl |  | 
						
							| 129 |  | omelon |  | 
						
							| 130 |  | znnen |  | 
						
							| 131 | 130 116 | entri |  | 
						
							| 132 |  | nn0ennn |  | 
						
							| 133 | 132 116 | entri |  | 
						
							| 134 |  | xpen |  | 
						
							| 135 | 131 133 134 | mp2an |  | 
						
							| 136 |  | xpomen |  | 
						
							| 137 | 135 136 | entri |  | 
						
							| 138 | 137 | ensymi |  | 
						
							| 139 |  | isnumi |  | 
						
							| 140 | 129 138 139 | mp2an |  | 
						
							| 141 |  | ffn |  | 
						
							| 142 | 13 141 | ax-mp |  | 
						
							| 143 |  | dffn4 |  | 
						
							| 144 | 142 143 | mpbi |  | 
						
							| 145 |  | fodomnum |  | 
						
							| 146 | 140 144 145 | mp2 |  | 
						
							| 147 |  | domentr |  | 
						
							| 148 | 146 137 147 | mp2an |  | 
						
							| 149 |  | domtr |  | 
						
							| 150 | 128 148 149 | sylancl |  | 
						
							| 151 |  | brdom2 |  | 
						
							| 152 | 150 151 | sylib |  | 
						
							| 153 | 37 122 152 | mpjaodan |  | 
						
							| 154 | 4 153 | eqeltrd |  |