Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
dyadval
Next ⟩
dyadovol
Metamath Proof Explorer
Ascii
Unicode
Theorem
dyadval
Description:
Value of the dyadic rational function
F
.
(Contributed by
Mario Carneiro
, 26-Mar-2015)
Ref
Expression
Hypothesis
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
Assertion
dyadval
⊢
A
∈
ℤ
∧
B
∈
ℕ
0
→
A
F
B
=
A
2
B
A
+
1
2
B
Proof
Step
Hyp
Ref
Expression
1
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
2
id
⊢
x
=
A
→
x
=
A
3
oveq2
⊢
y
=
B
→
2
y
=
2
B
4
2
3
oveqan12d
⊢
x
=
A
∧
y
=
B
→
x
2
y
=
A
2
B
5
oveq1
⊢
x
=
A
→
x
+
1
=
A
+
1
6
5
3
oveqan12d
⊢
x
=
A
∧
y
=
B
→
x
+
1
2
y
=
A
+
1
2
B
7
4
6
opeq12d
⊢
x
=
A
∧
y
=
B
→
x
2
y
x
+
1
2
y
=
A
2
B
A
+
1
2
B
8
opex
⊢
A
2
B
A
+
1
2
B
∈
V
9
7
1
8
ovmpoa
⊢
A
∈
ℤ
∧
B
∈
ℕ
0
→
A
F
B
=
A
2
B
A
+
1
2
B