Metamath Proof Explorer


Theorem dyadval

Description: Value of the dyadic rational function F . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypothesis dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
Assertion dyadval A B 0 A F B = A 2 B A + 1 2 B

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F = x , y 0 x 2 y x + 1 2 y
2 id x = A x = A
3 oveq2 y = B 2 y = 2 B
4 2 3 oveqan12d x = A y = B x 2 y = A 2 B
5 oveq1 x = A x + 1 = A + 1
6 5 3 oveqan12d x = A y = B x + 1 2 y = A + 1 2 B
7 4 6 opeq12d x = A y = B x 2 y x + 1 2 y = A 2 B A + 1 2 B
8 opex A 2 B A + 1 2 B V
9 7 1 8 ovmpoa A B 0 A F B = A 2 B A + 1 2 B