Metamath Proof Explorer


Theorem e001

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e001.1 φ
e001.2 ψ
e001.3 χ θ
e001.4 φ ψ θ τ
Assertion e001 χ τ

Proof

Step Hyp Ref Expression
1 e001.1 φ
2 e001.2 ψ
3 e001.3 χ θ
4 e001.4 φ ψ θ τ
5 1 vd01 χ φ
6 2 vd01 χ ψ
7 5 6 3 4 e111 χ τ