Metamath Proof Explorer


Theorem e01

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e01.1 φ
e01.2 ψ χ
e01.3 φ χ θ
Assertion e01 ψ θ

Proof

Step Hyp Ref Expression
1 e01.1 φ
2 e01.2 ψ χ
3 e01.3 φ χ θ
4 1 vd01 ψ φ
5 4 2 3 e11 ψ θ