Metamath Proof Explorer


Theorem e010

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e010.1 φ
e010.2 ψ χ
e010.3 θ
e010.4 φ χ θ τ
Assertion e010 ψ τ

Proof

Step Hyp Ref Expression
1 e010.1 φ
2 e010.2 ψ χ
3 e010.3 θ
4 e010.4 φ χ θ τ
5 1 vd01 ψ φ
6 3 vd01 ψ θ
7 5 2 6 4 e111 ψ τ