Metamath Proof Explorer


Theorem e011

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e011.1 φ
e011.2 ψ χ
e011.3 ψ θ
e011.4 φ χ θ τ
Assertion e011 ψ τ

Proof

Step Hyp Ref Expression
1 e011.1 φ
2 e011.2 ψ χ
3 e011.3 ψ θ
4 e011.4 φ χ θ τ
5 1 vd01 ψ φ
6 5 2 3 4 e111 ψ τ