Metamath Proof Explorer


Theorem e012

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e012.1 φ
e012.2 ψ χ
e012.3 ψ , θ τ
e012.4 φ χ τ η
Assertion e012 ψ , θ η

Proof

Step Hyp Ref Expression
1 e012.1 φ
2 e012.2 ψ χ
3 e012.3 ψ , θ τ
4 e012.4 φ χ τ η
5 1 vd01 ψ φ
6 5 2 3 4 e112 ψ , θ η