Metamath Proof Explorer


Theorem e01an

Description: Conjunction form of e01 . (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e01an.1 φ
e01an.2 ψ χ
e01an.3 φ χ θ
Assertion e01an ψ θ

Proof

Step Hyp Ref Expression
1 e01an.1 φ
2 e01an.2 ψ χ
3 e01an.3 φ χ θ
4 3 ex φ χ θ
5 1 2 4 e01 ψ θ