Metamath Proof Explorer


Theorem e01an

Description: Conjunction form of e01 . (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e01an.1 φ
e01an.2 ψχ
e01an.3 φχθ
Assertion e01an ψθ

Proof

Step Hyp Ref Expression
1 e01an.1 φ
2 e01an.2 ψχ
3 e01an.3 φχθ
4 3 ex φχθ
5 1 2 4 e01 ψθ