Metamath Proof Explorer


Theorem e02

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e02.1 φ
e02.2 ψ , χ θ
e02.3 φ θ τ
Assertion e02 ψ , χ τ

Proof

Step Hyp Ref Expression
1 e02.1 φ
2 e02.2 ψ , χ θ
3 e02.3 φ θ τ
4 1 vd02 ψ , χ φ
5 4 2 3 e22 ψ , χ τ