Metamath Proof Explorer


Theorem e021

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e021.1 φ
e021.2 ψ , χ θ
e021.3 ψ τ
e021.4 φ θ τ η
Assertion e021 ψ , χ η

Proof

Step Hyp Ref Expression
1 e021.1 φ
2 e021.2 ψ , χ θ
3 e021.3 ψ τ
4 e021.4 φ θ τ η
5 1 vd01 ψ φ
6 5 2 3 4 e121 ψ , χ η