Metamath Proof Explorer


Theorem e022

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e022.1 φ
e022.2 ψ , χ θ
e022.3 ψ , χ τ
e022.4 φ θ τ η
Assertion e022 ψ , χ η

Proof

Step Hyp Ref Expression
1 e022.1 φ
2 e022.2 ψ , χ θ
3 e022.3 ψ , χ τ
4 e022.4 φ θ τ η
5 1 vd02 ψ , χ φ
6 5 2 3 4 e222 ψ , χ η