Metamath Proof Explorer


Theorem e02an

Description: Conjunction form of e02 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e02an.1 φ
e02an.2 ψ , χ θ
e02an.3 φ θ τ
Assertion e02an ψ , χ τ

Proof

Step Hyp Ref Expression
1 e02an.1 φ
2 e02an.2 ψ , χ θ
3 e02an.3 φ θ τ
4 3 ex φ θ τ
5 1 2 4 e02 ψ , χ τ