Metamath Proof Explorer


Theorem e03

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e03.1 φ
e03.2 ψ , χ , θ τ
e03.3 φ τ η
Assertion e03 ψ , χ , θ η

Proof

Step Hyp Ref Expression
1 e03.1 φ
2 e03.2 ψ , χ , θ τ
3 e03.3 φ τ η
4 1 vd03 ψ , χ , θ φ
5 4 2 3 e33 ψ , χ , θ η