Metamath Proof Explorer


Theorem e10an

Description: Conjunction form of e10 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e10an.1 φ ψ
e10an.2 χ
e10an.3 ψ χ θ
Assertion e10an φ θ

Proof

Step Hyp Ref Expression
1 e10an.1 φ ψ
2 e10an.2 χ
3 e10an.3 ψ χ θ
4 3 ex ψ χ θ
5 1 2 4 e10 φ θ