Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e111
Metamath Proof Explorer
Description: A virtual deduction elimination rule (see syl3c ). (Contributed by Alan Sare , 14-Jun-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e111.1
⊢ φ → ψ
e111.2
⊢ φ → χ
e111.3
⊢ φ → θ
e111.4
⊢ ψ → χ → θ → τ
Assertion
e111
⊢ φ → τ
Proof
Step
Hyp
Ref
Expression
1
e111.1
⊢ φ → ψ
2
e111.2
⊢ φ → χ
3
e111.3
⊢ φ → θ
4
e111.4
⊢ ψ → χ → θ → τ
5
3
in1
⊢ φ → θ
6
1
in1
⊢ φ → ψ
7
2
in1
⊢ φ → χ
8
6 7 4
syl2im
⊢ φ → φ → θ → τ
9
8
pm2.43i
⊢ φ → θ → τ
10
5 9
syl5com
⊢ φ → φ → τ
11
10
pm2.43i
⊢ φ → τ
12
11
dfvd1ir
⊢ φ → τ