Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e1111
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 6-Mar-2012) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e1111.1
⊢ φ → ψ
e1111.2
⊢ φ → χ
e1111.3
⊢ φ → θ
e1111.4
⊢ φ → τ
e1111.5
⊢ ψ → χ → θ → τ → η
Assertion
e1111
⊢ φ → η
Proof
Step
Hyp
Ref
Expression
1
e1111.1
⊢ φ → ψ
2
e1111.2
⊢ φ → χ
3
e1111.3
⊢ φ → θ
4
e1111.4
⊢ φ → τ
5
e1111.5
⊢ ψ → χ → θ → τ → η
6
1
in1
⊢ φ → ψ
7
2
in1
⊢ φ → χ
8
3
in1
⊢ φ → θ
9
4
in1
⊢ φ → τ
10
6 7 8 9 5
ee1111
⊢ φ → η
11
10
dfvd1ir
⊢ φ → η