Metamath Proof Explorer


Theorem e1111

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1111.1 φ ψ
e1111.2 φ χ
e1111.3 φ θ
e1111.4 φ τ
e1111.5 ψ χ θ τ η
Assertion e1111 φ η

Proof

Step Hyp Ref Expression
1 e1111.1 φ ψ
2 e1111.2 φ χ
3 e1111.3 φ θ
4 e1111.4 φ τ
5 e1111.5 ψ χ θ τ η
6 1 in1 φ ψ
7 2 in1 φ χ
8 3 in1 φ θ
9 4 in1 φ τ
10 6 7 8 9 5 ee1111 φ η
11 10 dfvd1ir φ η