Metamath Proof Explorer


Theorem e112

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e112.1 φ ψ
e112.2 φ χ
e112.3 φ , θ τ
e112.4 ψ χ τ η
Assertion e112 φ , θ η

Proof

Step Hyp Ref Expression
1 e112.1 φ ψ
2 e112.2 φ χ
3 e112.3 φ , θ τ
4 e112.4 ψ χ τ η
5 1 vd12 φ , θ ψ
6 2 vd12 φ , θ χ
7 5 6 3 4 e222 φ , θ η