Metamath Proof Explorer


Theorem e11an

Description: Conjunction form of e11 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e11an.1 φ ψ
e11an.2 φ χ
e11an.3 ψ χ θ
Assertion e11an φ θ

Proof

Step Hyp Ref Expression
1 e11an.1 φ ψ
2 e11an.2 φ χ
3 e11an.3 ψ χ θ
4 3 ex ψ χ θ
5 1 2 4 e11 φ θ