Metamath Proof Explorer


Theorem e12

Description: A virtual deduction elimination rule (see sylsyld ). (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e12.1 φ ψ
e12.2 φ , χ θ
e12.3 ψ θ τ
Assertion e12 φ , χ τ

Proof

Step Hyp Ref Expression
1 e12.1 φ ψ
2 e12.2 φ , χ θ
3 e12.3 ψ θ τ
4 1 vd12 φ , χ ψ
5 4 2 3 e22 φ , χ τ