Metamath Proof Explorer


Theorem e121

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e121.1 φ ψ
e121.2 φ , χ θ
e121.3 φ τ
e121.4 ψ θ τ η
Assertion e121 φ , χ η

Proof

Step Hyp Ref Expression
1 e121.1 φ ψ
2 e121.2 φ , χ θ
3 e121.3 φ τ
4 e121.4 ψ θ τ η
5 1 vd12 φ , χ ψ
6 3 vd12 φ , χ τ
7 5 2 6 4 e222 φ , χ η