Metamath Proof Explorer


Theorem e122

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e122.1 φ ψ
e122.2 φ , χ θ
e122.3 φ , χ τ
e122.4 ψ θ τ η
Assertion e122 φ , χ η

Proof

Step Hyp Ref Expression
1 e122.1 φ ψ
2 e122.2 φ , χ θ
3 e122.3 φ , χ τ
4 e122.4 ψ θ τ η
5 1 vd12 φ , χ ψ
6 5 2 3 4 e222 φ , χ η