Metamath Proof Explorer


Theorem e123

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e123.1 φ ψ
e123.2 φ , χ θ
e123.3 φ , χ , τ η
e123.4 ψ θ η ζ
Assertion e123 φ , χ , τ ζ

Proof

Step Hyp Ref Expression
1 e123.1 φ ψ
2 e123.2 φ , χ θ
3 e123.3 φ , χ , τ η
4 e123.4 ψ θ η ζ
5 1 vd13 φ , χ , τ ψ
6 2 vd23 φ , χ , τ θ
7 5 6 3 4 e333 φ , χ , τ ζ