Metamath Proof Explorer


Theorem e12an

Description: Conjunction form of e12 (see syl6an ). (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e12an.1 φ ψ
e12an.2 φ , χ θ
e12an.3 ψ θ τ
Assertion e12an φ , χ τ

Proof

Step Hyp Ref Expression
1 e12an.1 φ ψ
2 e12an.2 φ , χ θ
3 e12an.3 ψ θ τ
4 3 ex ψ θ τ
5 1 2 4 e12 φ , χ τ