Metamath Proof Explorer


Theorem e13an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e13an.1 φ ψ
e13an.2 φ , χ , θ τ
e13an.3 ψ τ η
Assertion e13an φ , χ , θ η

Proof

Step Hyp Ref Expression
1 e13an.1 φ ψ
2 e13an.2 φ , χ , θ τ
3 e13an.3 ψ τ η
4 3 ex ψ τ η
5 1 2 4 e13 φ , χ , θ η