Metamath Proof Explorer


Theorem e1a

Description: A Virtual deduction elimination rule. syl is e1a without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1a.1 φ ψ
e1a.2 ψ χ
Assertion e1a φ χ

Proof

Step Hyp Ref Expression
1 e1a.1 φ ψ
2 e1a.2 ψ χ
3 1 in1 φ ψ
4 3 2 syl φ χ
5 4 dfvd1ir φ χ