Metamath Proof Explorer


Theorem e1bi

Description: Biconditional form of e1a . sylib is e1bi without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1bi.1 φ ψ
e1bi.2 ψ χ
Assertion e1bi φ χ

Proof

Step Hyp Ref Expression
1 e1bi.1 φ ψ
2 e1bi.2 ψ χ
3 2 biimpi ψ χ
4 1 3 e1a φ χ