Metamath Proof Explorer


Theorem e1bir

Description: Right biconditional form of e1a . sylibr is e1bir without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e1bir.1 φ ψ
e1bir.2 χ ψ
Assertion e1bir φ χ

Proof

Step Hyp Ref Expression
1 e1bir.1 φ ψ
2 e1bir.2 χ ψ
3 2 biimpri ψ χ
4 1 3 e1a φ χ