Metamath Proof Explorer


Theorem e2

Description: A virtual deduction elimination rule. syl6 is e2 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e2.1 φ , ψ χ
e2.2 χ θ
Assertion e2 φ , ψ θ

Proof

Step Hyp Ref Expression
1 e2.1 φ , ψ χ
2 e2.2 χ θ
3 1 dfvd2i φ ψ χ
4 3 2 syl6 φ ψ θ
5 4 dfvd2ir φ , ψ θ