Metamath Proof Explorer


Theorem e20

Description: A virtual deduction elimination rule (see syl6mpi ). (Contributed by Alan Sare, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e20.1 φ , ψ χ
e20.2 θ
e20.3 χ θ τ
Assertion e20 φ , ψ τ

Proof

Step Hyp Ref Expression
1 e20.1 φ , ψ χ
2 e20.2 θ
3 e20.3 χ θ τ
4 2 vd02 φ , ψ θ
5 1 4 3 e22 φ , ψ τ