Metamath Proof Explorer


Theorem e201

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e201.1 φ , ψ χ
e201.2 θ
e201.3 φ τ
e201.4 χ θ τ η
Assertion e201 φ , ψ η

Proof

Step Hyp Ref Expression
1 e201.1 φ , ψ χ
2 e201.2 θ
3 e201.3 φ τ
4 e201.4 χ θ τ η
5 2 vd01 φ θ
6 1 5 3 4 e211 φ , ψ η