Metamath Proof Explorer


Theorem e202

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e202.1 φ , ψ χ
e202.2 θ
e202.3 φ , ψ τ
e202.4 χ θ τ η
Assertion e202 φ , ψ η

Proof

Step Hyp Ref Expression
1 e202.1 φ , ψ χ
2 e202.2 θ
3 e202.3 φ , ψ τ
4 e202.4 χ θ τ η
5 2 vd02 φ , ψ θ
6 1 5 3 4 e222 φ , ψ η