Metamath Proof Explorer


Theorem e21

Description: A virtual deduction elimination rule (see syl6ci ). (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e21.1 φ , ψ χ
e21.2 φ θ
e21.3 χ θ τ
Assertion e21 φ , ψ τ

Proof

Step Hyp Ref Expression
1 e21.1 φ , ψ χ
2 e21.2 φ θ
3 e21.3 χ θ τ
4 2 vd12 φ , ψ θ
5 1 4 3 e22 φ , ψ τ