Metamath Proof Explorer


Theorem e210

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e210.1 φ , ψ χ
e210.2 φ θ
e210.3 τ
e210.4 χ θ τ η
Assertion e210 φ , ψ η

Proof

Step Hyp Ref Expression
1 e210.1 φ , ψ χ
2 e210.2 φ θ
3 e210.3 τ
4 e210.4 χ θ τ η
5 3 vd01 φ τ
6 1 2 5 4 e211 φ , ψ η