Metamath Proof Explorer


Theorem e211

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e211.1 φ , ψ χ
e211.2 φ θ
e211.3 φ τ
e211.4 χ θ τ η
Assertion e211 φ , ψ η

Proof

Step Hyp Ref Expression
1 e211.1 φ , ψ χ
2 e211.2 φ θ
3 e211.3 φ τ
4 e211.4 χ θ τ η
5 2 vd12 φ , ψ θ
6 3 vd12 φ , ψ τ
7 1 5 6 4 e222 φ , ψ η