Metamath Proof Explorer


Theorem e212

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e212.1 φ , ψ χ
e212.2 φ θ
e212.3 φ , ψ τ
e212.4 χ θ τ η
Assertion e212 φ , ψ η

Proof

Step Hyp Ref Expression
1 e212.1 φ , ψ χ
2 e212.2 φ θ
3 e212.3 φ , ψ τ
4 e212.4 χ θ τ η
5 2 vd12 φ , ψ θ
6 1 5 3 4 e222 φ , ψ η