Metamath Proof Explorer


Theorem e22

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e22.1 φ , ψ χ
e22.2 φ , ψ θ
e22.3 χ θ τ
Assertion e22 φ , ψ τ

Proof

Step Hyp Ref Expression
1 e22.1 φ , ψ χ
2 e22.2 φ , ψ θ
3 e22.3 χ θ τ
4 3 a1i χ χ θ τ
5 1 1 2 4 e222 φ , ψ τ