Metamath Proof Explorer


Theorem e220

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e220.1 φ , ψ χ
e220.2 φ , ψ θ
e220.3 τ
e220.4 χ θ τ η
Assertion e220 φ , ψ η

Proof

Step Hyp Ref Expression
1 e220.1 φ , ψ χ
2 e220.2 φ , ψ θ
3 e220.3 τ
4 e220.4 χ θ τ η
5 3 vd02 φ , ψ τ
6 1 2 5 4 e222 φ , ψ η