Metamath Proof Explorer


Theorem e221

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e221.1 φ , ψ χ
e221.2 φ , ψ θ
e221.3 φ τ
e221.4 χ θ τ η
Assertion e221 φ , ψ η

Proof

Step Hyp Ref Expression
1 e221.1 φ , ψ χ
2 e221.2 φ , ψ θ
3 e221.3 φ τ
4 e221.4 χ θ τ η
5 3 vd12 φ , ψ τ
6 1 2 5 4 e222 φ , ψ η