Metamath Proof Explorer


Theorem e222

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e222.1 φ , ψ χ
e222.2 φ , ψ θ
e222.3 φ , ψ τ
e222.4 χ θ τ η
Assertion e222 φ , ψ η

Proof

Step Hyp Ref Expression
1 e222.1 φ , ψ χ
2 e222.2 φ , ψ θ
3 e222.3 φ , ψ τ
4 e222.4 χ θ τ η
5 3 dfvd2i φ ψ τ
6 5 imp φ ψ τ
7 1 dfvd2i φ ψ χ
8 7 imp φ ψ χ
9 2 dfvd2i φ ψ θ
10 9 imp φ ψ θ
11 8 10 4 syl2im φ ψ φ ψ τ η
12 11 pm2.43i φ ψ τ η
13 6 12 syl5com φ ψ φ ψ η
14 13 pm2.43i φ ψ η
15 14 ex φ ψ η
16 15 dfvd2ir φ , ψ η