Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e222
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 12-Jun-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e222.1
⊢ φ , ψ → χ
e222.2
⊢ φ , ψ → θ
e222.3
⊢ φ , ψ → τ
e222.4
⊢ χ → θ → τ → η
Assertion
e222
⊢ φ , ψ → η
Proof
Step
Hyp
Ref
Expression
1
e222.1
⊢ φ , ψ → χ
2
e222.2
⊢ φ , ψ → θ
3
e222.3
⊢ φ , ψ → τ
4
e222.4
⊢ χ → θ → τ → η
5
3
dfvd2i
⊢ φ → ψ → τ
6
5
imp
⊢ φ ∧ ψ → τ
7
1
dfvd2i
⊢ φ → ψ → χ
8
7
imp
⊢ φ ∧ ψ → χ
9
2
dfvd2i
⊢ φ → ψ → θ
10
9
imp
⊢ φ ∧ ψ → θ
11
8 10 4
syl2im
⊢ φ ∧ ψ → φ ∧ ψ → τ → η
12
11
pm2.43i
⊢ φ ∧ ψ → τ → η
13
6 12
syl5com
⊢ φ ∧ ψ → φ ∧ ψ → η
14
13
pm2.43i
⊢ φ ∧ ψ → η
15
14
ex
⊢ φ → ψ → η
16
15
dfvd2ir
⊢ φ , ψ → η