Metamath Proof Explorer


Theorem e223

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e223.1 φ , ψ χ
e223.2 φ , ψ θ
e223.3 φ , ψ , τ η
e223.4 χ θ η ζ
Assertion e223 φ , ψ , τ ζ

Proof

Step Hyp Ref Expression
1 e223.1 φ , ψ χ
2 e223.2 φ , ψ θ
3 e223.3 φ , ψ , τ η
4 e223.4 χ θ η ζ
5 1 in2 φ ψ χ
6 5 in1 φ ψ χ
7 2 in2 φ ψ θ
8 7 in1 φ ψ θ
9 3 in3 φ , ψ τ η
10 9 in2 φ ψ τ η
11 10 in1 φ ψ τ η
12 6 8 11 4 ee223 φ ψ τ ζ
13 12 dfvd3ir φ , ψ , τ ζ