Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e223
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 12-Dec-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e223.1
⊢ φ , ψ → χ
e223.2
⊢ φ , ψ → θ
e223.3
⊢ φ , ψ , τ → η
e223.4
⊢ χ → θ → η → ζ
Assertion
e223
⊢ φ , ψ , τ → ζ
Proof
Step
Hyp
Ref
Expression
1
e223.1
⊢ φ , ψ → χ
2
e223.2
⊢ φ , ψ → θ
3
e223.3
⊢ φ , ψ , τ → η
4
e223.4
⊢ χ → θ → η → ζ
5
1
in2
⊢ φ → ψ → χ
6
5
in1
⊢ φ → ψ → χ
7
2
in2
⊢ φ → ψ → θ
8
7
in1
⊢ φ → ψ → θ
9
3
in3
⊢ φ , ψ → τ → η
10
9
in2
⊢ φ → ψ → τ → η
11
10
in1
⊢ φ → ψ → τ → η
12
6 8 11 4
ee223
⊢ φ → ψ → τ → ζ
13
12
dfvd3ir
⊢ φ , ψ , τ → ζ