Metamath Proof Explorer


Theorem e22an

Description: Conjunction form of e22 . (Contributed by Alan Sare, 11-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e22an.1 φ , ψ χ
e22an.2 φ , ψ θ
e22an.3 χ θ τ
Assertion e22an φ , ψ τ

Proof

Step Hyp Ref Expression
1 e22an.1 φ , ψ χ
2 e22an.2 φ , ψ θ
3 e22an.3 χ θ τ
4 3 ex χ θ τ
5 1 2 4 e22 φ , ψ τ