Metamath Proof Explorer


Theorem e23

Description: A virtual deduction elimination rule (see syl10 ). (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e23.1 φ , ψ χ
e23.2 φ , ψ , θ τ
e23.3 χ τ η
Assertion e23 φ , ψ , θ η

Proof

Step Hyp Ref Expression
1 e23.1 φ , ψ χ
2 e23.2 φ , ψ , θ τ
3 e23.3 χ τ η
4 1 vd23 φ , ψ , θ χ
5 4 2 3 e33 φ , ψ , θ η