Metamath Proof Explorer


Theorem e233

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 29-Feb-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e233.1 φ , ψ χ
e233.2 φ , ψ , θ τ
e233.3 φ , ψ , θ η
e233.4 χ τ η ζ
Assertion e233 φ , ψ , θ ζ

Proof

Step Hyp Ref Expression
1 e233.1 φ , ψ χ
2 e233.2 φ , ψ , θ τ
3 e233.3 φ , ψ , θ η
4 e233.4 χ τ η ζ
5 1 dfvd2i φ ψ χ
6 2 dfvd3i φ ψ θ τ
7 3 dfvd3i φ ψ θ η
8 5 6 7 4 ee233 φ ψ θ ζ
9 8 dfvd3ir φ , ψ , θ ζ