Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
e233
Metamath Proof Explorer
Description: A virtual deduction elimination rule. (Contributed by Alan Sare , 29-Feb-2012) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
e233.1
⊢ φ , ψ → χ
e233.2
⊢ φ , ψ , θ → τ
e233.3
⊢ φ , ψ , θ → η
e233.4
⊢ χ → τ → η → ζ
Assertion
e233
⊢ φ , ψ , θ → ζ
Proof
Step
Hyp
Ref
Expression
1
e233.1
⊢ φ , ψ → χ
2
e233.2
⊢ φ , ψ , θ → τ
3
e233.3
⊢ φ , ψ , θ → η
4
e233.4
⊢ χ → τ → η → ζ
5
1
dfvd2i
⊢ φ → ψ → χ
6
2
dfvd3i
⊢ φ → ψ → θ → τ
7
3
dfvd3i
⊢ φ → ψ → θ → η
8
5 6 7 4
ee233
⊢ φ → ψ → θ → ζ
9
8
dfvd3ir
⊢ φ , ψ , θ → ζ